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2. Examining the association between behavioral
trajectory similarity clusters in social networks’

by Brandon Sepulvado™, Omar Lizardo™, Mike Wood™, Cheng
Wang™"", David Hachen™""

1. Introduction

The increasing availability of fine-grained temporal data on human inter-
action in social networks (Bahulkar ef al., 2017; Kim & Anderson, 2012; Liu
et al., 2018; Miritello, 2013; Sekara ef al., 2016), augmented with equally
fine-grained information on attitudes, habits, and practices collected via un-
obtrusive means (Purta ef al., 2016; Purta & Striegel, 2019), has opened up
new opportunities to study the link between social networks and human be-
havior (Lazer et al., 2009). For social networks, rather than thinking of pair-
wise interactions in the model of a static graph, there is now an emphasis on
temporal dynamics and developing temporal versions of quantitative network
structure (Dickison ef al., 2016; Holme & Saramiki, 2012). In the study of
human behavior, there is a renewed emphasis on methods attentive to dynam-
ic change, such as event-history and time-series analysis (Epskamp, 2020).
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Our recent work has attempted to join these lines of work by taking the
classic social network concept of dyadic behavioral similarity and looking at
it from a temporal perspective that emphasizes dynamic trajectories (Sepul-
vado et al., forthcoming). We depart from most prior work on similarity,
which has looked at it statically with the concept of homophily. There has
been a great deal of research attempting to both predict various types of ho-
mophily and assess its impact on network outcomes (Aral ef al., 2009; Kossi-
nets & Watts, 2007; Ingram & Morris, 2007; Yang et al., 2019; Lewis & Kau-
fman, 2018; Leszczensky & Pink, 2019). However, there has been very little
work looking at how changes in similarity predict tie formation, and how tie
formation results in changes in the similarity between two persons in their
behaviors. In this respect, the “dynamic” turn toward the study of dyads in
general and homophily in particular advocated by Rivera et al. (2010) about
ten years ago has yet come to pass (but see Bahulkar et al., 2017; Dokuka et
al., 2016; Schaefer & Kreager, 2020; Wang et al., 2020).

2. Background

In an earlier paper (Sepulvado et al., forthcoming), we developed the idea
of dyadic similarity trajectories and proposed methods for assigning dyads
into discrete, substantively meaningful clusters that help predict dyadic con-
nectivity and dyadic matching (homophily) on key sociodemographic traits.
This paper uses those methods to explore the predictive linkage between two
similarity trajectories, one based on physical activity and the other on social
activity.

The larger goal of this line of work is to model the association between
various similarity trajectories in order to improve our understanding of how
social ties in social networks form, evolve, and decay. In this paper, we focus
on dyadic similarity trajectories based on similarity in the two vertices’ net-
work position as measured by their temporal outdegree, the number of people
that they communicate with per unit of time and an indicator of how socially
active a person is in temporal social networks (Holme & Saramiki, 2012).

Of particular interest is the correspondence between trajectories based
on similarity in network position and trajectories based on similarity in be-
havior; in our case, physical activity is measured by daily step counts. We
use these two measures of similarity, how active people are physically and
socially, to ascertain the extent to which similarity in outdegree is associated
with both the probability of a tie and similarity in physical activity. Insights
gained by analyzing the association between similarity in social and physical
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activity will enhance our understanding of how behavioral similarity trajec-
tories can help predict tie formation, evolution, and persistence.

We use data from the longitudinal NetHealth Study, which collected net-
work, behavioral, and attitudinal data from smartphones, activity trackers,
and surveys. From this rich-attribute, fine-grained longitudinal social net-
work and behavior dataset, we generate dyadic communication similarity
trajectories using daily counts of the number of outgoing (person-initiated)
communication events obtained from smartphone logs. We compute daily
similarity scores for each dyad, which we use to create a final “second-or-
der” dyadic communication similarity trajectory. We then use clustering
techniques sensitive to the temporal (i.e., time-series) structure of the data
to generate dyadic clusters, showing that the clusters help predict dyadic
connectivity. Finally, we look at the statistical association between dyadic
clusters based on communication trajectories with clusters based on physical
activity trajectories, and we ask whether this association is moderated by
dyadic matching in sociodemographic traifts.

2.1. Key Concepts

We begin by defining some key terms. This includes the network notion
of a dyad, the idea of a behavioral trajectory, the concept of behavioral tra-
Jectory similarity clusters defined over dyads, and the association between
distinct behavioral trajectory similarity clusters when considering two or
more behaviors, which may include endogenous communicative activity in
social networks. In the discussion, we elaborate on how our approach can be
extended to other behavioral and non-behavioral temporal patterns of change
and higher-order network motifs beyond dyads.

2.2. Dyads

We begin with the classic social network concept of the dyad (Wasserman
& Faust, 1994, p. 505-ff). In social networks represented as a graph G with a
set of undirected links E, a set of vertices V, and associated symmetric adja-
cency matrix A, a dyad is defined as all unordered pair of actors in the system
(in directed networks, the pairs are ordered); each cell (ajj) in either the upper
or lower triangle of the symmetric adjacency matrix (aj = ajj, v, j e v) refers
to a dyad in the network. In the simplest case of an undirected network, there
are two mutually exclusive types of dyads: connected (in which case ajj = 1)
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and null (in which case aj; = 0). Connected dyads are joined by an edge (link
or tie) in the social network, whereas null dyads do not share an edge.

In the temporal network case, dyads must be indexed at each timepoint
because actors may join or leave the system and because dyads may transi-
tion from one state (e.g., similar) to another (e.g., dissimilar) or from being
connected to null (and back). Accordingly, the question of whether two dyads
are similar on a given trait must be separated from whether they have a direct
link in the temporal network. More formally, at any point in time (f), an edge
between two actors, / and j, may or may not exist, which can be written, using
matrix notation, as ajjt = 1 if the edge exists at time f, ajj; = or 0 if the edge does
not exist at time {. A dyad can be similar or dissimilar on a given time-varying
trait and be either connected or disconnected in the temporal network. Whether
connected dyads are more behaviorally similar is an empirical question.

2.3. Actor-Level Behavioral Trajectories

Each actor in a temporal social network is observed at multiple points in
time. This means that information obtained on behaviors, traits, and habits
of the actor can also dynamically change over the observation period (Chris-
takis & Fowler, 2007; Fowler & Christakis, 2008; Lazer ef al., 2009; Lewis
et al., 2008). Consider the value of a given trait or behavior s, observed for
actor / at time {. The time series of values Sj = {St(1), Sit(2), Sit(3)---Sit(m)}
across all time points m defines a behavioral trajectory for that actor on that
trait. For instance, if the trait is something like physical activity, such a tra-
jectory might indicate that an actor’s physical activity level might increase,
decrease, or vacillate between the two. In essence, behavioral trajectories
can take multiple functional forms with respect to time (Sepulvado €t al.,
forthcoming).

2.4. Dyad-Level Behavioral Trajectory Similarity

Since each actor in the network has a behavioral trajectory, each dyad can
be more or less similar on that trait at each point in time. More formally, for
each pair of actors in a temporal network i and j, with behavioral trajectories
on trait 8, denoted by §; and sj, we can define the dyadic behavioral trajectory
similarity at each point in time $jjt as the absolute value of the difference
between the value of the trait for each actor at that time, or |Sjt - Sjf. Note
that just like for each behavioral trajectory, the dyadic similarity trajectory
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defines a time-series over each observed time point for each dyad in the net-
work, Sij="{Sjjt(1), Sij(t2)s Sijt(3)---Sijt(m)3 -

This time series may itself display substantively meaningful behavior. For
instance, a dyad may become more similar or dissimilar on the observed trait
or display fluctuating similarity and dissimilarity patterns over time. Dyadic
behavioral trajectory similarities and dissimilarities may also be affected by
a variety of dyad-level factors, inclusive of dyadic similarity on other (both
time-varying and -invariant) traits, such as whether the two actors in the dyad
have similar value on sociodemographic attributes (e.g., race, religion) or en-
vironmental factors (e.g., propinquity) relevant to connectivity in social net-
works (Feld, 1982; McPherson et al., 2001; Rivera et al., 2010; Sepulvado et
al., forthcoming).

We can link the dynamics of dyadic behavioral trajectory similarity with
other dynamics in a social network, most importantly the dynamic transition
of dyads from null to connected (or vice versa) and, in directed networks,
dynamic transitions of dyads from null, to asymmetric, to mutual (Wasser-
man & Faust, 1994, p. 505-ff). This can advance core issues in social net-
work analysis, such as whether similarities precede connectivity (transition
of dyad from a null to a connected state), whether connectivity is a causal
input into increasing similarity, and whether increasing dissimilarity leads to
disconnectivity (transition of a dyad from a connected to null state) or vice
versa (Bahulkar et al., 2017; Lewis & Kaufman, 2018; Noel & Nyhan, 2011;
Schaefer & Kraeger, 2020).

2.5. Dyad-Level Behavioral Trajectory Similarity Clusters

The total possible number of dyads in a network increases super-linearly
in the number of actors. As is well-known, for an undirected network repre-
sented by a graph of order n, there are ’42n(n-1) possible dyads (Wasserman
& Faust, 1994, p. 515). This means that the number of dyadic similarity
trajectories to be considered will similarly increase. When examining dy-
adic behavioral similarity trajectories in temporal networks, it is desirable
to look for a way to cluster dyads into a smaller set of classes. The idea is
to assign dyads to the same class when they have similar (e.g., substantively
the same except for measurement error and small statistical deviations) be-
havioral similarity trajectories (e.g., all the dyads in the same class become
more similar over time). Such a possible set of dyadic classes or clusters in
social networks have been called behavioral trajectory similarity clusters
(Sepulvado et al., forthcoming).
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Although previous studies have examined temporal changes in tie char-
acteristics (Krackhardt & Hancock, 2006; Martin & Yeung, 2006; Morgan
et al., 1997; Schaefer & Kraeger, 2020) or the emergence of collective simi-
larity due to the diffusion of contagions (Centola, 2010; Christakis & Fowl-
er, 2007, 2008, 2013; Fowler & Christakis, 2008b, 2008a), the concept of
behavioral similarity frajectory clusters solves two fundamental problems
(Sepulvado et al., forthcoming). First, many studies researching similarity
dynamics in social networks condition on a dyad already being connected
(Fowler & Christakis, 2008b, 2008a), leading to biased conclusions about
how ties impact dyadic similarity (e.g., Cohen-Cole & Fletcher, 2008). Sec-
ond, similarity on behavioral and/or attitudinal traits is often considered at
only a single time point (e.g., Aral et al., 2009; Feiler & Kleinbaum, 2015;
Lewis ef al., 2012), yet this stasis is not a valid assumption for many individ-
ual characteristics. For example, political attitudes can change, and behavio-
ral patterns evolve with life events (Bidart & Lavenu, 2005), and as seasons
change. Beyond addressing common issues with network analysis studies,
such trajectory clusters enable theoretical innovation.

In this paper, we extend our previous work in two significant ways. First,
we extend the notion of behavioral trajectory similarity from exogenous
(e.g., physical activity) to endogenous social network traits. Namely, we use
the communicative activity level to define a behavioral temporal degree tra-
jectory for each actor in the network (Miritello, 2013; Miritello et al., 2013;
Raeder et al., 2011). In a temporal network, each actor i may communicate
(send ties) to a set of actors k at time t. The quantity K(i); defines the level of
communication of that person at that time, a measure of temporal network
centrality referred to as femporal oufdegree (Kim & Anderson, 2012). This
measure of centrality is an indicator of a person’s sociability and varies both
between persons (in time-averaged slices) and within persons over time.

Absolute temporal degree differences between the members of the dyad in
the network (Sjj¢ = [K(i)¢ - K(j)4) thus define a set of behavioral trajectory simi-
larity series based upon communication for each dyad. These, in turn, can be
used to assign each dyad to a behavioral trajectory similarity cluster, as defined
earlier. The second way in which we extend our previous work is by looking
at multiple behavioral trajectory similarities in the same analysis. To that end,
we construct behavioral trajectory similarity clusters based on an exogenous
trait (daily step counts) and an endogenous trait (temporal degree). We then
look at whether these two dyadic class assignments are stafistically dependent
upon one another using methods to detect a statistical association in categori-
cal (polytomous) variables (Powers & Xie, 2008). In this way, we can examine
the linkage between multiple dyadic behavioral trajectory similarity clusters.

41

Copyright © 2021 by FrancoAngeli s.r.l., Milano, Italy. ISBN 9788835124603



3. Data

We use data from a study called NetHealth that followed a cohort of 625
undergraduates at the University of Notre Dame (Purta et al., 2016). To ex-
amine the relationship between health behaviors, communication activities,
social networks, and other actor-level traits, students were equipped with
smartphones and activity trackers worn on the wrist (i.e., Fitbits) and sur-
veyed before matriculation and every semester after that. Although the entire
study period was from Fall 2015 to Spring 2019, only the Fall 2015 data
are included in these analyses. We exclude data before 1 September 2015
because students were still picking up their Fitbit devices.

Communication data come from smartphones, specifically “metadata”
from calls, text messages, and WhatsApp messages. The metadata includes
timestamped information of communication events and the numbers of the
caller/sender and receiver. We use the data to construct a temporally aggre-
gated social network among study participants using a threshold: treating an
edge as existing if there was any communication attempt in the period be-
tween any two pairs of actors / and j. For physical activity data, we use daily
steps as measured by the Fitbits.

The communication and physical activity data are used to create distinct
trajectories: first at the actor level and then for dyads. Each participant has a
number of initiated communication events for each day in the 109-day Fall
2015 period. This daily communication activity is directed. We use this in-
formation to compute each person’s temporal (daily) degree in the network,
defined as the number of other actors in the network contacted at time f. Sim-
ilarly, each person has a daily total number of steps for each day in the pe-
riod. Actor-level behavioral trajectory time series are constructed from both
daily communications and steps. To derive dyadic similarity trajectories, we
compute the absolute daily difference in degree and steps for each dyad.

There are 195,000 possible dyads in the NetHealth Study network, but
not all of these are included in analyses. If at least one of the actors in a dyad
had missing data for a given day, we treated the dyad’s steps as missing for
that day. Study participants could have no missing data on communication
activity because days without communication were coded as zero. We ex-
cluded dyads that were missing over 25% of their daily step differences, and,
for those dyads with up to 25% missing data, conducted linear interpolation.
After filtering out missing data, 32,872 dyads remain.

Participants completed surveys collecting demographic information used
in the analysis. We use this information to create three binary variables indi-
cating whether both actors in a dyad have the same responses for race/ethnici-
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ty, gender, and religious identity. The final sample of 282 participants includes
156 male, 126 female students, 192 students identifying as white, 15 students
identifying as Black, 25 identifying as Asian, 36 identifying as Latino, one
student who did not identify with any of the racial identities, and 13 who were
born outside the U.S. The sample includes 211 Catholics, 36 Protestants, 10
students identifying with “Other Religion” and 25 identifying as not religious.
16,563 dyads identify as the same gender, 16,602 identify with the same race/
ethnicity, and 19,359 identify with the same religious identity.

4. Methods

To identify dyadic c/asses of (dis)similarity trajectories, we turn to unsu-
pervised learning. Yet, given that we start with trajectories (i.e., time series) of
109 daily differences in steps and communication activity for all dyads, most
traditional clustering methods are unsuitable. We thus rely upon time series
clustering methods. There are three general approaches within this class of
clustering methods: clustering on specific time points, clustering on subse-
quences of observations, or clustering the entire time-series (Aghabozorgi et
al., 2015, pp. 18-19). We choose the third strategy because we are interested
in the evolution of dyadic similarity across the full Fall 2015 semester.

Rather than clustering using model-based methods (e.g., clustering on
output from ARIMA models) or feature-based methods (e.g., clustering low-
er-dimensional representations of time series), we use a shape-based method
that clusters multiple time series based upon the similarity of their shapes
because previous evaluations have demonstrated that shape-based methods
exhibit superior performance (Aghabozorgi et al., 2015, pp. 18-19; Liao,
2005; Paparrizos & Gravano, 2017). Because it outperforms various alterna-
tives for time series data (Paparrizos & Gravano, 2015, 2017), we choose the
k-shape algorithm. k-shape clustering is based on the k-means algorithm and
considers multiple known distortions that are frequently present in time-se-
ries data (Paparrizos & Gravano, 2015, p. 1859). For example, time-series’
features might be scaled differently (i.e., scaling invariance), and specific
subsequences of the two time-series might have a similar shape while other
subsequences considerably diverge (i.e., shift invariance).

We assess the meaningfulness and validity of the dyadic trajectory simi-
larity clusters, based on temporal degree and obtained using the method de-
scribed above in two ways. First, we examine whether dyads assigned to the
same temporal degree trajectory similarity class are more or less likely to
transition from the null to the connected state during the observation period.
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For this analysis, we specify a model predicting a dyad’s probability of be-
ing connected from the assigned similarity trajectory cluster membership and
compute predicted probabilities of having a tie for each cluster. We use logis-
tic regression with Firth (1992) penalization to account for any bias produced
by the “rare-event” nature of the dyadic outcome (there is a larger class im-
balance, with null dyads outnumbering connected dyads by a factor of 49 to
1). Additionally, we tested a Firth-penalized model with intercept correction
(not presented; Puhr ef al., 2017), which did not substantively change model
performance. The Firth logistic regression treats whether a dyad has a tie (i.e.,
1 if the two individuals communicated during the Fall 2015 semester) as the
dependent variable and cluster membership as the dependent variables.

Second, and this is the crucial innovation introduced in the paper, we ex-
amine the question of whether dyadic frajectory similarity classes based on
one (endogenous) trait (i.e., temporal degree) are associated with dyadic tra-
jectory similarity classes based on another (exogenous) trait (daily steps). We
use log-linear models to examine the association between cluster membership
along these two dyadic trajectory similarity dimensions (Powers & Xie, 2008).
Additionally, we examine the extent to which any association between the two
dyadic clusters is due to dyadic matching on time-invariant sociodemographic
factors, which has been called “homophily” in the social networks literature
(McPherson et al., 2001; Rivera et al., 2010). To do this, we use log-linear mod-
els of the three-way association between dyadic temporal degree and step simi-
larity trajectory cluster, and three types of sociodemographic homophily — gen-
der, race, and religion. These models allow us to ascertain the extent to which
the association between step and communication activity clusters is partially
the result of the association between demographic similarity and both step- and
communication-based dyadic similarity trajectory cluster membership.

We first estimate a Poisson model using the steps and communication
clusters to predict cell count (i.e., the number of dyads falling into each com-
bination) and identify systematic associations by examining which cells have
high residuals (i.e., where cell count differs from what would be expected by
chance). Next, we run a series of nested log-linear models (Powers & Xie,
2008) to examine the three-way association between demographic homoph-
ily measures (same gender, same race, or same religion), physical activity
cluster membership, and temporal degree cluster membership. The baseline
(independence) model fits the marginal distributions for the steps clusters,
the communication clusters, and the homophily measure. The second model
fits parameters for each homophily factor’s association with the steps and
the communication clusters. The final model fits the two-way marginal be-
tween step and temporal degree cluster membership. These models regress
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cell count on different specifications of the step trajectory clusters, communi-
cation trajectory clusters, and each sociodemographic variable; each model’s
exact specification may be found in the “Equation” column of Table 1.

5. Results

The bar plot in Figure 1 shows the sizes of the clusters derived from
outgoing communication, while Figure 2 presents the typical trajectories for
each dyadic class identified by the k-shape clustering algorithm. The line
in each plot in Figure 2 represents the centroid trajectory of a cluster. The
X-axes indicate the day (with month labels), and the y-axes indicate the z-nor-
malized value for the absolute difference in temporal degree for all the dyads
in that class on that day. Recall that each dyad trajectory is a time series that
was initially the absolute difference in daily activity for the actors in a dyad.

Fig. 1— Sizes of degree-based clusters
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There are two clusters (4 and 9) with a constant standardized difference
score of zero across all days except for one large peak. Each peak occurs during
a holiday break period where students typically leave campus and visit home,
as noted by the figures’ shaded area (Fall Break and Thanksgiving, respective-
ly). These are the two largest clusters, containing 14,930 dyads (almost 50%).
The peaks indicate periods when there is a great deal more communication het-
erogeneity in the population, which results in dyads between people with sub-
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stantially different activity levels. There are also peaks evident in other cluster
profiles (e.g., 8 and 12), but the z-score is not flat outside those peak periods.

Fig. 2 — Cluster centroids for degree-based clusters
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If we focus on non-peak periods, other patterns are evident. In clusters 1
and 2, there is a good deal of difference early in the period, but scores even-
tually stabilize (indicating convergence in temporal degree over time). For
clusters 3 and 7, it is the reverse (indicating divergence). Dyads in clusters 5
and 10 exhibit an inverted-U shape pattern with a period of dissimilarity in
the middle. Clusters 6, 11, and — to some extent — 12 have more of an erratic
pattern with periods in which the z-scores are below zero, thus indicating
above-average similarity between the dyads.

Figure 3 shows centroid plots for the 21 dyadic trajectory similarity clus-
ters based upon steps. The CVIs suggested 21 steps-based similarity frajec-
tories, and the number of dyads within each cluster is distributed much more
evenly than with the communication similarity trajectories. Clusters 3, 4,
10, 16, and 18 tend to have extreme dissimilarity during the mid-semes-
ter break, though they each exhibit different combinations of similarity and
similarity throughout the rest of the semester. Clusters 3 and 19 peak during
the Thanksgiving break, but dyads in 3 remain otherwise much more similar
than those in 19. We refer readers to Sepulvado et al. (forthcoming) for a
more detailed description of the clusters.
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Figure 4 presents the results of the logistic regression predicting the tie
probability based on cluster membership. We present the predicted prob-
abilities of a tie derived from model parameter estimates. Most predicted
probabilities are around .02, which is the NetHealth social network’s overall
density in Fall 2015 (equivalent to the base probability of being a connected
dyad). Clusters 2 and 3 have higher than expected probabilities, while dyads
in clusters 10 and 11 are less likely to be connected than expected by chance.

Fig. 3— Cluster Centroids for daily step dyadic trajectory similarity clusters
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5.1. Association Between Steps and Temporal Degree Clusters

Next, we turn to the log-linear models. With residual deviance of 4664.2
on 220 degrees of freedom, the Poisson model predicting the number of dyads
falling into each step and communication cluster combination has a p-value
< 0.001. Figure 5 visualizes the residuals from the predicted counts under
the independence model: (observed count - predicted count)/sqrt(predicted
count). The largest positive residual values (> 5) are found in 6% of the 252
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cells. There are fewer negative residual cells (2% with residuals < -5), and all
these cases involve communication clusters which have a stable daily z-scores
except for one peak (clusters 4, 5, 9, 12), suggesting it is unlikely this step
cluster type is associated with a flat temporal degree difference profile.

Fig. 4 — Predicted probability of connected dyads by temporal degree cluster
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We ran a series of nested log-linear models (Powers & Xie, 2008) to
examine the three-way association between demographic homophily meas-
ures (same gender, same race, or same religion) and step and communication
activity cluster membership. Table 1 shows the results for gender, race, and
religious homophily. Recall that the baseline (independence) model fits the
marginal distributions for the steps clusters, the communication clusters, and
the homophily measure and that the second model fits parameters for each
homophily factor’s association with the steps and the communication clus-
ters. As shown in the table, adding the two-way marginals that fit the associ-
ation of gender, race, and religious homophilous dyads with step and com-
munication trajectory similarity clusters statistically improves the fit of the
model using conventional criteria of significance (p < 0.01). This indicates
that dyads assigned to the same temporal degree and step trajectory similar-
ity class are also more (or less) likely than expected by chance to match on
key sociodemographic characteristics.

However, looking at the substantive improvement in model fit (indicated
by the proportion reduction in deviance), we can see that the association
between step and communication trajectory similarity clusters and race and
religious homophily is much stronger than the corresponding improvement
in model fit for gender (15% and 20% versus 1.6% respectively). This in-
dicates that, while statistically discernible, the association between dyadic
degree trajectory similarity cluster and gender is much weaker than for the
other homophily dimensions. This is consistent with results reported in our
previous work, which showed dyadic behavioral trajectory similarity cluster
membership to have a weak relationship with gender homophily.

The final model in each panel fits the two-way marginal between step and
temporal degree cluster membership. As already noted, there is a good deal
of association between these two cluster memberships. This is reflected in the
substantial improvement in model fit. Furthermore, the residual deviance in
these models is very low, indicating that a model with three-way interactions
allowing the association between step and communication clusters to vary by
homophily of the dyad would not yield much of an improvement in fit.
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6. Discussion

Dyads are an important component of social structure and, for some, the
building block of social networks (Wasserman ef al., 1994, p. 505-ff; Rivera
et al., 2010). The analytic approach outlined here provides a way to take
measures of time-varying traits defined on actors in a dynamic social net-
work and quantify aspects of dyadic network evolution. This allows us to
extend to the temporal case the basic notion of dyadic similarity; this notion
is based on such basic social network constructs as homophily. Consider-
ing similarity to be a time-varying attribute of dyads yields the notion of a
temporal dyadic similarity trajectory, which helps to specify the dynamic
evolution of each pair of actors in the network concerning how similar (or
dissimilar) they are on a target attribute. This attribute, as we have shown
here, can be either exogenous or endogenous to the network. Building on
this, we define the idea of dyadic similarity trajectory cluster as a mapping
that assigns each dyad to a data-derived class based upon whether they share
a temporal similarity pattern with other dyads in the same class.

Our empirical analysis, both in previous work and in this paper, shows
that these clusters encode essential information, allowing us to predict both
temporal network dynamics and whether a dyad is homophilous on a given
set of (time-constant) traits. The results reported in this paper show that the
dyadic trajectory similarity cluster approach previously shown to be fruitful
when considering behavioral traits exogenous to the network (Sepulvado et
al., forthcoming) can be usefully extended to actor-level traits endogenous to
the network, such as communicative activity (temporal degree). Our results
indicate that dyadic trajectory similarity classes derived from this type of en-
dogenous trait also encode useful information about network dynamics (e.g.,
helping us predict whether a dyad is connected or not) and are statistically
associated with dyadic classes obtained from trajectory similarity based on
exogenous traits. These findings indicate that insights into when and how
social network ties form, how they evolve, and how long they persist can be
garnered by constructing both behavioral and network position similarity tra-
jectories for pairs of persons and ascertaining how these similarity patterns
change when a tie is formed, during the life of the tie, before its decay, and
after the tie no longer exists.

Future research should extend the approach proposed in this paper in sev-
eral ways. First, temporal degree is only one of many endogenous time-var-
ying traits defined on actors in a social network. Multiple indicators of an
actor’s position in a temporal network at a given time — defining a type of
“temporal centrality” (Kim & Anderson, 2012) — yield an actor-level trajec-
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tory (Liu et al., 2018), from which one may derive a corresponding dyadic
similarity trajectory and a related cluster assignment for each dyad. Future
work can thus investigate whether dyadic trajectory similarity clusters based
on other endogenous measures of actors’ position provide substantively rel-
evant network information (e.g., helping predict other dyadic properties).
Such work can also examine the link between these other trajectory clusters
and other fine-grained actor-level traits.

Additionally, the approach proposed here can be extended to other net-
work building blocks or “motifs” (Milo et al., 2002) beyond dyads, such as
triads and higher-level structures. After all, a dyad is a subgraph of size 2,
and it is possible to extend the notions of similarity, similarity trajectory,
and similarity trajectory clusters for subgraphs of larger size. For instance,
triadic dissimilarity can be treated as an additive function of the dissimi-
larity between its three constituent dyads. The temporal evolution of this
quantity thus gives triadic dissimilarity trajectories. Triads can then be as-
signed to triadic trajectory similarity clusters, and these could be used to help
predict whether given triads belong to (or a more likely to transition into)
well-known triadic connectivity classes (Wang et al., 2014), such as the null,
open, or closed triad.
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